

2007 Marking Scheme

Grade	Mark Re	quired	° condidatas cohievina anada
Awarded	(/ 125)	%	% candidates achieving grade
A	90+	72%	27.0%
В	75+	60%	27.8%
С	60+	48%	23.6%
D	52+	42%	9.3%
No award	<52+	<42%	12.2%

Section:	Multiple Cho	oice	Extended Answer		Investigati	on
Average Mark:	27.8	/40	33.1	/60	15.4	/25

2007 Adv Higher Chemistry Marking Scheme									
MC Qu	Answer	% Pupils Correct	Reasoning						
1	С	48	 A no elements contain ionic bonding (ionic bonding found in metals+non-metals compounds) B no elements contain polar covalent bonding as electronegativity is same in elements C elements can have non-polar covalent bonds which can form gaseous covalent oxides D metal elements form ionic oxides which are solid are room temperature 						
2	A		ZA Electronegativity: Sn=1.8 & I=2.6 ∴ difference= 0.8 (most covalent character) SB Electronegativity: Fe=1.8 & Cl=3.0 ∴ difference= 1.2 SC Electronegativity: Li=1.0 & F=4.0 ∴ difference= 3.0 (least covalent character) SD Electronegativity: K=0.8 & Br=2.8 ∴ difference= 2.0						
3	A	86	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Particles Alpha Beta						
4	D	44	 A s-orbital is outermost orbital in Helium only and not other Noble Gases B p-orbital is outermost orbital in all Noble Gases except Helium C d-orbital is never the outermost orbital in any atom D s-orbital is outermost orbital in Helium and p-orbital is outmost in other Noble Gases 						
5	С	70	EM Radiation Gamma X-ray UV Visible Infrared Microwave Radio & TV Velocity $3 \times 10^8 \text{m s}^{-1}$ $5 \times 10^8 \text{m s}^{-1}$						
6	A	71	$H = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$						
7	A	82	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
8	С	92	Image: Construction of the second						
9	С	57	 Conductivity increases with the easing temperature in semiconductors only A Hund's Rule: Electron half-fill degenerate orbitals before doubly-filling orbitals B Aufbau Principle: Electrons fill in order of increasing energy C Pauli Exclusion Principle: Orbital can hold 2 electrons only and they have opposite spins D Heisenberg's Uncertainty Principle: Position and Energy of electron cannot be known at same time 						
10	D	72	d _{xy} orbital d _{yz} orbital d _{xz} orbital d _{zz} orbital d _{z²} orbital d _{x²-y²} orbital						
11	В	60	A Hydrogen given off at the negative electrode \therefore Hydrogen H ⁺ ions not hydride H ⁻ ions B Hydride ions become hydrogen gas at positive electrode: $2H^- \rightarrow H_2 + 2e^-$ C Hydrides react with water and break down to release H ₂ gas D Hydrides react with water and break down to release H ₂ gas						

12	C	73	Flask X: 1mol of Ne = 20g : 5g of Ne = 0.25mol = 1.50×10^{23} atoms					
16	5	/ 5	Flask Y: 1mol of Ar = 40g ∴ 5g of Ar = 0.125mol = 0.75×10 ²³ atoms					
			1mol $Ag_2CrO_4 = (2 \times 107.9) + (1 \times 52) + (4 \times 16) = 215.8 + 52 + 64 = 331.8g$					
			n o. of mol = <u>mass</u> = <u>5.795 g</u> 332.8 g mol ⁻¹ = 0.0175mol					
	-		•					
13	13 C	65	2Ag⁺ + K₂CrO₄> Ag₂CrO₄ + 2K⁺					
			2mol 1mol					
			0.0349mol 0.0175mol					
			m ass = n o. of mol × gfm = 0.0349mol × 107.9g mol ⁻¹ = 3.769g					
			🗷 A Catalysts give same concentrations of reactants and products at equilibrium					
			∴ no change to value of equilibrium constant					
			B Pressure increase favours pressure-reducing reverse reaction					
14	C	77	∴ less products lowers value of equilibrium constant					
			☑C Increase in temperature favours endothermic (forward) reaction ∴ more products increases the value of the equilibrium constant					
			D Decrease in temperature favours the exothermic (reverse) reaction					
			∴ less products decreases the value of the equilibrium constant					
		1	n o. of mol X in ethoxyethane = v olume x c oncentration = 0.015 × 0.010 = 0.00015mol					
15	D	02	n o. of mol X in water = volume x concentration = 0.012 × 0.010 = 0.00012mol					
15	В	82	K= $\frac{[X]_{ethoxyethane}}{[X]_{water}}$ = $\frac{0.00015 mol in 20 cm^3}{0.00012 mol in 20 cm^3}$ = 1.25					
			[X] _{water} 0.00012mol in 20cm ³					
			• $2Fe + 1\frac{1}{2}O_2 \rightarrow Fe_2O_3 \qquad \Delta H=-822kJ \text{ mol}^{-1}$					
			• $C + O_2 \rightarrow CO_2$ $\Delta H = -394 \text{kJ mol}^{-1}$					
16	Λ	00	•×-1 $Fe_2O_3 \rightarrow 2Fe + 1\frac{1}{2}O_2 \Delta H = +822kJ mol^{-1}$					
10	A	80	$\Theta \times 1^{\frac{1}{2}}$ $1^{\frac{1}{2}}C + 1^{\frac{1}{2}}O_2 \rightarrow 1^{\frac{1}{2}}CO_2$ $\Delta H=-591 \text{kJ mol}^{-1}$					
			$\overset{\text{Add}}{0' + 0'} \qquad \text{Fe}_2 O_3 + 1\frac{1}{2}C \longrightarrow 2\text{Fe} + 1\frac{1}{2}CO_2 \Delta \text{H} = +231 \text{kJ mol}^{-1}$					
			☑A Enthalpy of formations are calculated using experimental values from at least					
. —		/	two experiments. Hess's Law is used to calculate the enthalpy of formation.					
17	A	6/	\blacksquare B Enthalpy of combustion is calculated by a single Δ H=cm Δ T experiment					
			\blacksquare C Enthalpy of solution is calculated by a single \triangle H=cm \triangle T experiment					
			■ D Enthalpy of neutralisation is calculated by a single △H=cm△T experiment					
			Bond Breaking Steps Bond Forming Steps 6x C-H 6x 414 = 2484kJ 5x C-H 5x 414 =2070kJ					
			6x C-H 6x 414 = 2484kJ 5x C-H 5x 414 =2070kJ 1x C-C 1x 346 = 346kJ 1x C-C 1x 346 = 346kJ					
			$1 \times C^{-C}$ 1×340 = 340×340 $1 \times C^{-C}$ 1×340 = 340×340 $1 \times Br - Br$ 1×194 = 194kJ $1 \times C - Br$ 1×285 = 285kJ					
18	D	66	1x H-Br 1x 362 = 362kJ					
10	D	00	<u> </u>					
			ΔH = Σ endothermic steps - Σ exothermic steps					
			= +3024kJ -3063kJ					
			= -39kJ mol ⁻¹ (NB the data in this question is based on the old data booklet)					
			🗷 A Melting and boiling are both endothermic processes					
19	n	64	B 1 st Ionisation energy is an endothermic process					
17	υ	04	🗷 C Breaking Br-Br bond and boiling are both endothermic processes					
			D Electron Affinity of Bromine is an exothermic process (-324.6kJ mol ⁻¹)					
		☑A Neon is a gas at 100°C and is more disordered than a solid at 100°C						
20	C	75	B Mercury is a liquid at 100°C and is more disordered than a solid at 100°C					
	\checkmark		☑C Sulphur is a solid at 100°C and is the most ordered and has lowest entropy					
			\blacksquare D Phosphorus is a liquid at 100°C and is more disordered than a solid at 100°C					

21	D	88	Ellingham diagrams have ΔG° on the y=axis and temperature on the x-axis. Where the lines of different reactions cross, the reaction becomes feasible at this temperature (upper line is the reaction is reversed)							
22	С	59	Δ G ° Δ Η ° For ΔH° t	=	ΔH° ΔG°	- +	ΤΔS° ΤΔS° ΔS°			
			always be neg O	gative m Cr ³⁺ + 3e ⁻	ust be negat \rightarrow		must be negative E° = -0.74V			
			0	Ag⁺ + e⁻		5	E° = +0.80V			
			0 ×-1	Cr			E° = +0.74V			
23	В	70	@x3 Add	3Ag⁺ + 3e ⁻ 3Ag⁺ + Cr		5	E° = +0.80V			
			⊠C Cr metal is oxi ⊠D Metal higher i	f this cell is +1.54 electrons and depo idised and loses e in electrochemica	V sit on the si lectrons to l series giv	ilver electrode become Cr ³⁺ ves electrons	making electrode heavier ions to metal lower down			
24	D	71	⊠B Overall order ⊠C If both [A] an	 A Both reactants are 1st order. Reaction rate is dependent on their concentration B Overall order is 2 if both reactants are 1st order. C If both [A] and [B] are double then rate of reaction is quadrupled not doubled D Rate decreases as reactants are used up during the reaction 						
25	С	60	 A Free radicals are made by homolytic fission B A free radical chain reaction is set in the reaction of methane and chlorine C Carbocations are made during S_N1 type nucleophilic substitution reactions D A free radical chain reaction is set in the reaction of methane and chlorine 							
26	D	61	$\square A C_4H_9NH_2$ is a primary amine and hydrogen bonding raises its boiling point $\square B C_3H_7NHCH_3$ is a secondary amine and hydrogen bonding raises its boiling point $\square C C_2H_5NHC_2H_5$ is a secondary amine and hydrogen bonding raises its boiling point $\square D C_2H_5N(CH_3)_2$ is a tertiary amine: no hydrogen bonding to raise its boiling point							
27	A	70		ly undergoes a va o C=C double bon re not attracted	riety of el ds so does to the elec	ectrophilic su not undergo a tron-dense be	bstitution reactions addition reactions enzene ring			
20	D	10	рН	X ethanoic acid Acidic	1	Y thanol eutral	Z phenol Acidic			
28	B B 6			4.8 <u>Strongest</u> t dissociation of H ⁺ ions igher pK _a value than in Z	No dissociatio	- eakest on of H⁺ as alcohols ociate into acids	9.9 <u>Medium</u> Some dissociation of H ⁺ ions but lower pK _a value than X so less dissociaton of H ⁺ than in X			
29	D	81	⊠B Br⁺ is positive ⊠C CH₃⁺ is positive	and is not attrac e and is not attra	ted to cen cted to ce	tres of positiv ntres of posit	ive charge			
30	В	74	 D NH₃ has a lone pair of electrons and is attracted to centres of positive charge A Volatility decreases as chain increases. Solubility decreases as chain increases B Both volatility and solubility decrease as hydrocarbon chain length increases C Volatility decreases as chain length increases Solubility decreases as chain length increases 							

31	В	72	 ☑A hybridisation refers to s and p orbitals becoming of equal energy ☑B sigma (single) bonds involves overlapping orbitals lying on the axis of the bond ☑C pi (double) bonds involve the overlapping of orbitals outside axis of the bond 				
		/ _	図 C pi (double) bonds involve the overlapping of orbitals outside axis of the bond 図D pi (double) bonds involve the overlapping of orbitals outside axis of the bond				
			🗵 A ethanal and propanal are produced in t				
22		71	B ethanal and ethanal are produced in th				
32	D	71	EC propanone and methanal are produced				
			D ethanal and propanone are produced in	n this reaction			
			🗷 A too many Br atoms to be a tertiary ha	logenalkane			
33	D	00	☑B (CH ₃) ₃ CBr is a tertiary halogenalkane:	3 carbons attached to the C-Br carbon			
33	В	80	C too many Br atoms to be a halogenalkane				
			ED BrCH2C(CH3)3 is a primary halogenalka	ne: 1 carbon attached to C-Br carbon			
			A hydrocarbons: compounds containing c	arbon and hydrogen atoms only			
34	Δ	80	\blacksquare B C ₆ H ₁₂ could be hexene or cyclohexane				
34	A	00	$\mathbf{E} C C_6 H_{12}$ could be hexene or cyclohexane				
			D C6H12 has various isomers of alkenes a	·			
			A propan-1-ol oxidises to propanal (reacts with To				
35	B	64	$\overline{\mathcal{D}}B$ propan-2-ol oxidises to propanone: does not react with carbonate or react with Tollen's Reagent				
00			$\mathbf{E}\mathcal{C}$ propanone does not undergo oxidation reaction with acidified dichromate solution				
			D propanoic acid does not undergo oxidation reaction with acidified dichromate solution				
			$\mathbf{E} A \ 2 C_2 H_5 O H + 2 N a \longrightarrow 2 C_2 H_5 O^{-} N a^{+} +$	_			
36	B	53	$\square B HOCH_2CH_2OH + 2Na \rightarrow Na^+O^-CH_2CH_2$				
•••		55	$ \blacksquare C \ 2CH_3COOH + 2Na \rightarrow 2CH_3COO^-Na^+ + H_2 $				
			ED CH ₃ CHO: alkanals do not react with so				
	_		A Propanal: aldehydes react with 2,4-dir				
37	В	41	B Propanoic acid: Carboxylic acids do not react with 2,4-dintrophenylhrydrazine				
		• •	 C Propanal: aldehydes react with 2,4-dinitrophenylhydrazine to make a derivative D Benzaldehyde: aldehydes react with 2,4-dinitrophenylhydrazine to make a derivative 				
			\square A This structure has formula mass of 134				
	•		B This structure has a tri-substituted b				
38	A	68	$\mathbb{E}C C_9H_{12}O$ has a formula mass of 136				
			ED This structure does not have two -CH	3 methyl arouns			
			XA Geometric isomers have a C=C double				
			B Two Cl atoms on opposite sides of C=C				
			☑C Two Cl atoms on opposite sides of C=C				
			☑D 1,2-dichloroethene has two geometric				
39	D	81	trans-1,2-dichloroethene	cis-1,2-dichloroethene			
	U		CI H				
			In mass spectrometry, the heaviest peak i	•			
10	\mathbf{r}	71	\mathbf{E} A propane C_3H_8 has a formula mass of 4				
40	υ		B Propan-1-ol C ₃ H ₇ OH has a formula mas				
			C Propan-2-ol C3H7OH has a formula mas				
			☑D Propanone CH3COCH3 has a formula m	ass of Do			

2007 Adv Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning				
1a	173.9	$\Delta S^{\circ} = \Sigma S^{\circ}_{(\text{products})} - \Sigma S^{\circ}_{(\text{reactants})}$ $= (1 \times 72.1) + (1 \times 213.8) - 112.0$ $= 72.1 + 213.8 - 112.0$ $= 285.9 - 336$ $= 173.9 \text{ J K}^{-1} \text{ mol}^{-1}$				
1b	1529.6K	The reaction becomes thermodynamically feasible when $\Delta G^{\circ} = 0$ $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = 0 \therefore T\Delta S^{\circ} = \Delta H^{\circ} \therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{266 \times 1000 \text{ J mol}^{-1}}{173.9 \text{ J K}^{-1} \text{ mol}^{-1}} = 1529.6 \text{ K}$				
2a	$K = \frac{[CH_4] [H_2S]^2}{[CS_2] [H_2]^4}$	$K = \frac{[CH_4]^1 [H_2S]^2}{[CS_2]^1 [H_2]^4} \therefore K = \frac{[CH_4] [H_2S]^2}{[CS_2] [H_2]^4}$				
2b	281.25	$K = \frac{[CH_4] [H_2 S]^2}{[CS_2] [H_2]^4} = \frac{(0.0054) \times (0.00010)^2}{(0.012) \times (0.0020)^4} = \frac{5.4 \times 10^{-11}}{1.9 \times 10^{-13}} = 281.25$				
За	Donates H*/proton	Bronsted-Lowry DefinitionAcidDonates a proton/H* (forms the conjugate base)BaseAccepts a proton/H* (forms the conjugate acid)				
3b	HCO₃ ⁻	$\begin{array}{cccc} H_2O & + & CO_2 & \longrightarrow & H^+ & + & HCO_3^-\\ & & & & & \\ Conjugate base \\ H_2O \mbox{ and } CO_2 \mbox{ combine to form molecules of } H_2CO_3 \end{tabular} \mbox{ better version of this equation is:} \\ H_2CO_3 & + & H_2O & \longrightarrow & H_3O^+ & + & HCO_3^-\\ & & & & & & \\ acid & & & & & & \\ conjugate \mbox{ acid } & & & & & \\ \end{array}$				
Зс	3.7	$pH = \frac{1}{2}pK_{a} - \frac{1}{2}\log_{10} c$ = $(\frac{1}{2} \times 6.4) - \frac{1}{2} \times \log_{10}(0.1)$ = 3.2 - (-0.5) = 3.7				
4 a(i)	1 st Order	ExperimentChangeEffect on RateOrder of reactant $1+2$ or $3+4$ $[H_2O_2] \times 2$ $\times 2$ $[H_2O_2]^1$				
4 a(ii)	1 st Order	1+3 or 2+4 [HI] x2 x2 [HI] ¹				
4b	Rate = k [H ₂ O ₂] [HI]	Rate = $k \times [H_2O_2]^1 \times [HI]^1$: rate = $k [H_2O_2][HI]$				
4c	0.0328 l mol ⁻¹ s ⁻¹	rate = $k \times [H_2O_2] \times [HI]$ $k = \frac{rate}{[H_2O_2] \times [HI]}$ $= \frac{4.3 \times 10^{-9} \text{ mol } l^{-1} \text{ s}^{-1}}{3.2 \times 10^{-4} \text{ mol } l^{-1} \times 4.1 \times 10^{-4} \text{ mol } l^{-1}}$ $= 0.0328 \text{ l mol}^{-1} \text{ s}^{-1}$				
5a	-181.42kJ mol ⁻¹	2mol of e ⁻ transferred in redox reaction: Zn + Cu ²⁺ \rightarrow Zn ²⁺ + Cu ΔG° = -nFE° = -2 × 96500 × 0.94 = -181420 J mol ⁻¹ = -181.42 kJ mol ⁻¹				
5b	Concentrations of solutions should be 1 mol l^{-1}	Under standard conditions: Temperature = 298K (25°C) Pressure = 1 atmosphere Concentration = 1 mol l ⁻¹				
5с	1.10V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

	Murexide has one colour						
6.0		Murexide binds to metal ions less strongly than EDTA so EDTA will					
6a		displace it and the murexide changes colour as it is displaced					
	when free	Ignore rough titre & titre 1 to work out average as titres must be within 0.2cm ³ of each other Average volume of titre = $\frac{24.2+24.3}{2} = \frac{48.5}{2} = 24.25$ cm ³					
		n o of mol EDTA = v olume × c oncentration = 0.02425 × 0.101 = 0.002449mol					
6b	20.96%	EDTA and Ni ²⁺ complex in a ratio of 1:1 ∴ no. of mol Ni ²⁺ ions in 20cm ³ = 0.002449mol no. of mol Ni ²⁺ ions in 100cm ³ = 0.01227mol mass = no. of mol × gfm = 0.01227mol × 58.7 g mol ⁻¹ = 0.719g mass of Ni 0.719a					
		% Ni = <u>mass of Ni</u> = <u>0.719g</u> x 100 = 20.96% mass of salt = <u>3.43g</u> x 100 = 20.96%					
60	Impurities in sample or	Impurities will make the sample heavier than it would be pure so the increased mass of the salt due to the impurity would lower the percentage of Ni ²⁺					
6c	Sample might be damp (contains extra water)	Nickel (II) sulphate is a hexahydrate salt with 6 water molecules in the crystal structure. If extra water molecules get in then the salt will be heavier than it should					
7 a(i)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁹ 4s ² is incorrect as an electron from 4s subshell is borrowed to complete the 3d subshell to form 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹					
7 a(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷	Co atoms have electron arrangement: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁷ 4s² Co²+ ions lose 2 electrons from 4s subshell: 1s² 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁷					
7 b(i)	$Cu^{+}(g) \rightarrow Cu^{2+}(g) + e^{-}$	2 nd Ionisation Energy: 1 mole of electrons removed from 1 mole of 1+ ions in the gaseous state					
		Copper has an electron arrangement of $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ and the					
7b(ii)	from a full d subshell	removal of the 2 nd electron breaks the complete 3d ¹⁰ subshell. Complete or half-filled shells require more energy to break.					
8a(i)	Aluminium Chloride Magnesium chloride	Magnesium chloride is an ionic compound as it has a high melting point and is stable when dissolved in water. Aluminium chloride is covalent as it sublimes into a gas at a temperature far too low for it to be ionic and breaks down when added to water releasing HCl _(g) white fumes.					
8a(ii)	Al ₂ H ₆	By following the cross-over rule, aluminium chloride has a formula of AlCl _{3.} Formula mass of AlCl ₃ = (1×27)+(3×35.5) = 27+106.5 = 133.5 ∴ if formula mass = 267 then formula must be Al ₂ Cl ₆					
8b	Hydrogen chloride HCl	Hydrogen chloride gas is released as white fumes when a covalent compound like aluminium chloride is added to water. $Al_2Cl_{6(g)} + 3H_2O(l) \longrightarrow Al_2O_{3(s)} + 6HCl_{(g)}$					
8c	CH-CH3 CH-CH3	$\begin{array}{c} CI\\ CH_{3}CHCH_{3} \xrightarrow{aluminium chloride} (heterolytic fission) \\ CH_{3}CHCH_{3} \xrightarrow{c} (heterolytic fission) \\ CH_{3} \xrightarrow{c} (H^{3} c$					
8d(i)	Cs⁺ bigger than Na⁺ or ratio of ionic radii are different	The caesium Cs^+ ion is similar in size to the Cl^- and takes 8:8 co-ordination in the ionic lattice. The sodium Na ⁺ ion is smaller in ionic radii than the Cl^- ion and takes 6:6 co-ordination in the lattice					
8d(ii)	6:6 as ratio of radii similar to NaCl	Ionic radii Na* = 95pm and Cl ⁻ = 181pm ∴ ratio 95:181 = 1.91:1 Fe ²⁺ = 61 pm and O ²⁻ = 136pm ∴ ratio 61:136 = 2.23:1					

9a 9b(i)	Lone pairs of electrons +3	The lone pairs of electrons on the N atom and the O atom are able to form dative covalent bonds with metal ions The Picalinate ion has a -1 charge : 3 x picalinate ions will have a total -3 charge							
	+3								
9b(i)	+3	The Picolinate ion has a -1 charge \therefore 3 x picolinate ions will have a total -3 charge.							
		If the complex is neutral overall then the Cr ion must have a 3+ charge.							
		If Cr ³⁺ ions are changed into chromium with an oxidation state of VI, this is an							
9b(ii)	01	increase in the oxidation state of chromium \therefore oxidation.							
		If hydrogen peroxide is causing the oxidation of Chromium, the hydrogen peroxide is an oxidising agent.							
		Hexacyanochromate (II)							
		No. of Cyanide Metal negative Charge on							
		ligands ion ligand name complex metal ion							
9c	Hexacyanochromate (11)	Neutral ligands include: Negative Ligands include: Central Ion: Charge:							
		Higand Name Ligand Name ion is converted							
		NH ₃ ammine Cyanide CN ⁻ cyanido Metals end in ATE							
		CO carbonyl Nitrite NO2 nitrito e.g. Cuprate, Ferrate, Cobaltate brackets							
	esters	Iso-amyl acetate is an ester with O							
10a(i)		the following functional group:							
100(1)									
		(acetate is the old name for ethanoate) $-{\cal C}-{\cal O}-{\cal C}$							
10a(ii) s	solvents or perfumes	Esters are used as flavourings, perfumes and solvents							
	3-methylbutan-1-ol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10b(i)		$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
		н н н с_с_н							
		HOH							
		ester + water							
10b(ii)	condensation or esterification	alcohol + carboxylic acid — 🔸 ester + water							
11a a	carbon 4 & carbon 5	A chiral carbon is a carbon which has four different groups attached to it.							
	5	Every pharmacologically-active substance has a part of the molecule which							
	binds to receptor and can cause a biological response	has a specific shape which fits the receptor.							
	Lause a Diological response	 Agonists and the natural substrate cause a biological response inside the cell. 							
11c	Agonist	 Antagonists fit the binding site of the receptor but do not cause the biological response and prevent any other chemical doing so. 							

12a(i)	Hydrolysis	The ester is hydrolysed into its alcohol and carboxylic acid. The carboxylic acid then is neutralised by sodium hydroxide to form a salt
12a(ii)	concentrated hydrochloric acid	$\begin{array}{llllllllllllllllllllllllllllllllllll$
12a(iii)	Recrystallisation	
12a(iv)	7.02g	70% yield benzoic acid = $4.0g \therefore 100\%$ yield benzoic acid= $4.0g \times \frac{100}{70} = 5.71g$ 1mol Benzoic acid $C_6H_5COOH = (7\times12)+(6\times1)+(2\times16) = 84+6+32 = 122g$ no. of mol = $\frac{mass}{gfm} = \frac{5.71}{122} = 0.0468mol$ ethyl benzoate \rightarrow benzoic acid 1mol 0.0468mol 0.0468mol 1mol Ethyl Benzoate $C_9H_{10}O_2 = (9\times12)+(10\times1)+(2\times16) = 108+10+32 = 150g$ mass = no. of mol × gfm = 0.0468mol × 150 g mol^{-1} = 7.02g
12b(i)	Dehydration	Dehydration is an elimination reaction where H_2O is removed and a C=C double bond is created at the removal point
12b(ii)	Diagram showing:	H H H H H H H H H H H H H H H H H H H
13a(i)	0.64g	mass of C in CO ₂ = ¹² / ₄₄ × 3.52g = 0.96g mass of H in H ₂ O = ² / ₁₈ × 1.44g = 0.16g Mass of Oxygen = total mass - mass of carbon - mass of hydrogen = 1.76g - 0.96g - 0.16g = 0.64g
13a(ii)	C₂H₄O	$\begin{array}{ c c c c c c c }\hline Element & C & H & O \\\hline Mass & 0.96 & 0.16 & 0.64 \\\hline Mo. of moles & 0.96 & 12 & 0.16 & 0.64 \\\hline No. of moles & 0.96 & 0.16 & 0.64 & 0.64 \\\hline Mole ratio & 0.08 & = 0.16 & = 0.04 \\\hline Mole ratio & 0.08 & 0.04 & 0.04 & 0.04 \\\hline Mole ratio & 0.04 & 0.04 & 0.04 & 0.04 \\\hline expression & 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\\hline & 0.04 & 0.04 & 0.04 & 0.04 & 0.04 & 0.04 & 0.04 \\\hline & 0.04 & 0$
13b(ii)	$C_4H_8O_2$	Formula mass of $C_2H_4O = (2\times12)+(4\times1)+(1\times16) = 24+4+16 = 44g$ since mass of compound X = 88g \therefore formula of X = $C_4H_8O_2$

	Butanoic acid	Peak at Chemical Shift	0.9	1.6	2.6	10.8	
		Relative area under peak	3	2	2	1	
13c(i)	ННН Н-С-С-С-С-С ННН ОН	Number of hydrogens in group	3	2	2	1	
		Chemical Group	-CH₃	-OH	-CH₂-C=O	-СООН	
		Molecule must have 4 carbons and -COOH group (not an ester!) ∴ Butanoic acid: CH3-CH2-CH2-COOH					
13c(ii)	Standard reference substance for reference purposes	Tetramethylsilane (TMS) is the standard reference substance used to measure all the other substances are measured against.					